Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1365718, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646545

RESUMEN

Macrophages are tissue resident innate phagocytic cells that take on contrasting phenotypes, or polarization states, in response to the changing combination of microbial and cytokine signals at sites of infection. During the opening stages of an infection, macrophages adopt the proinflammatory, highly antimicrobial M1 state, later shifting to an anti-inflammatory, pro-tissue repair M2 state as the infection resolves. The changes in gene expression underlying these transitions are primarily governed by nuclear factor kappaB (NF-κB), Janus kinase (JAK)/signal transducer and activation of transcription (STAT), and hypoxia-inducible factor 1 (HIF1) transcription factors, the activity of which must be carefully controlled to ensure an effective yet spatially and temporally restricted inflammatory response. While much of this control is provided by pathway-specific feedback loops, recent work has shown that the transcriptional co-regulators of the CBP/p300-interacting transactivator with glutamic acid/aspartic acid-rich carboxy-terminal domain (CITED) family serve as common controllers for these pathways. In this review, we describe how CITED proteins regulate polarization-associated gene expression changes by controlling the ability of transcription factors to form chromatin complexes with the histone acetyltransferase, CBP/p300. We will also cover how differences in the interactions between CITED1 and 2 with CBP/p300 drive their contrasting effects on pro-inflammatory gene expression.


Asunto(s)
Macrófagos , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Regulación de la Expresión Génica , Transducción de Señal , Activación de Macrófagos/genética , Transactivadores/metabolismo , Transactivadores/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Polaridad Celular
2.
Oncogenesis ; 12(1): 32, 2023 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-37336886

RESUMEN

Collectively, the MYC family of oncoprotein transcription factors is overexpressed in more than half of all malignancies. The ability of MYC proteins to access chromatin is fundamental to their role in promoting oncogenic gene expression programs in cancer and this function depends on MYC-cofactor interactions. One such cofactor is the chromatin regulator WDR5, which in models of Burkitt lymphoma facilitates recruitment of the c-MYC protein to chromatin at genes associated with protein synthesis, allowing for tumor progression and maintenance. However, beyond Burkitt lymphoma, it is unknown whether these observations extend to other cancers or MYC family members, and whether WDR5 can be deemed as a "universal" MYC recruiter. Here, we focus on N-MYC amplified neuroblastoma to determine the extent of colocalization between N-MYC and WDR5 on chromatin while also demonstrating that like c-MYC, WDR5 can facilitate the recruitment of N-MYC to conserved WDR5-bound genes. We conclude based on this analysis that N-MYC and WDR5 colocalize invariantly across cell lines at predicted sites of facilitated recruitment associated with protein synthesis genes. Surprisingly, we also identify N-MYC-WDR5 cobound genes that are associated with DNA repair and cell cycle processes. Dissection of chromatin binding characteristics for N-MYC and WDR5 at all cobound genes reveals that sites of facilitated recruitment are inherently different than most N-MYC-WDR5 cobound sites. Our data reveals that WDR5 acts as a universal MYC recruiter at a small cohort of previously identified genes and highlights novel biological functions that may be coregulated by N-MYC and WDR5 to sustain the neuroblastoma state.

3.
Oncogenesis ; 11(1): 30, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35650187

RESUMEN

Malignant rhabdoid tumor (MRT) is driven by the loss of the SNF5 subunit of the SWI/SNF chromatin remodeling complex and then thought to be maintained by residual SWI/SNF (rSWI/SNF) complexes that remain present in the absence of SNF5. rSWI/SNF subunits colocalize extensively on chromatin with the transcription factor MYC, an oncogene identified as a novel driver of MRT. Currently, the role of rSWI/SNF in modulating MYC activity has neither been delineated nor has a direct link between rSWI/SNF and other oncogenes been uncovered. Here, we expose the connection between rSWI/SNF and oncogenic processes using a well-characterized chemical degrader to deplete the SWI/SNF ATPase, BRG1. Using a combination of gene expression and chromatin accessibility assays we show that rSWI/SNF complexes facilitate MYC target gene expression. We also find that rSWI/SNF maintains open chromatin at sites associated with hallmark cancer genes linked to the AP-1 transcription factor, suggesting that AP-1 may drive oncogenesis in MRT. Interestingly, changes in MYC target gene expression are not overtly connected to the chromatin remodeling function of rSWI/SNF, revealing multiple mechanisms used by rSWI/SNF to control transcription. This work provides an understanding of how residual SWI/SNF complexes may converge on multiple oncogenic processes when normal SWI/SNF function is impaired.

4.
Oncogene ; 40(20): 3593-3609, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33931740

RESUMEN

The SNF5 subunit of the SWI/SNF chromatin remodeling complex has been shown to act as a tumor suppressor through multiple mechanisms, including impairing the ability of the oncoprotein transcription factor MYC to bind chromatin. Beyond SNF5, however, it is unknown to what extent MYC can access additional SWI/SNF subunits or how these interactions affect the ability of MYC to drive transcription, particularly in SNF5-null cancers. Here, we report that MYC interacts with multiple SWI/SNF components independent of SNF5. We show that MYC binds the pan-SWI/SNF subunit BAF155 through the BAF155 SWIRM domain, an interaction that is inhibited by the presence of SNF5. In SNF5-null cells, MYC binds with remaining SWI/SNF components to essential genes, although for a purpose that is distinct from chromatin remodeling. Analysis of MYC-SWI/SNF target genes in SNF5-null cells reveals that they are associated with core biological functions of MYC linked to protein synthesis. These data reveal that MYC can bind SWI/SNF in an SNF5-independent manner and that SNF5 modulates access of MYC to core SWI/SNF complexes. This work provides a framework in which to interrogate the influence of SWI/SNF on MYC function in cancers in which SWI/SNF or MYC are altered.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína SMARCB1/metabolismo , Factores de Transcripción/metabolismo , Línea Celular , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/genética , Células HEK293 , Humanos , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteína SMARCB1/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...